A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks
نویسندگان
چکیده
In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm [Formula: see text] should have a well defined continuous counterpart [Formula: see text], referred to as its model, which constitutes an asymptotic of [Formula: see text] when image resolution goes to infinity; (2) the equality of two such models [Formula: see text] and [Formula: see text] establishes a theoretical (asymptotic) equivalence of their digital counterparts [Formula: see text] and [Formula: see text]. Such a comparison is of full theoretical value only when, for each involved algorithm [Formula: see text], its model [Formula: see text] is proved to be an asymptotic of [Formula: see text]. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms.The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model [Formula: see text] is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity [Formula: see text]. We also argue that, in a sense, [Formula: see text] is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملMedical Image Segmentation Using a Combined Approach
In this paper, we present a combined approach designed for automated segmentation of radiological image, such as CT, MRI, etc, to get the organ or interested area from the image. This approach integrates region-based method and boundary-based method. Such integration reduces the drawbacks of both methods and enlarges the advantages of them. Firstly, we use fuzzy connectedness method to get an i...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملRegion-Based Segmentation: Fuzzy Connectedness, Graph Cut and Related Algorithms
In this chapter, we will review the current state of knowledge on regionbased digital image segmentation methods. More precisely, we will concentrate on the four families of such algorithms: (a) The leading theme here will be the framework of fuzzy connectedness (FC) methods. (b) We will also discuss in detail the family of graph cut (GC) methods and their relations to the FC family of algorith...
متن کاملContents 11 Region - Based Segmentation : Fuzzy Connectedness , Graph Cut and Related Algorithms
In this chapter, we will review the current state of knowledge on regionbased digital image segmentation methods. More precisely, we will concentrate on the four families of such algorithms: (i) The leading theme here will be the framework of fuzzy connectedness (FC) methods. (ii) We will also discuss in detail the family of graph cut (GC) methods and their relations to the FC family of algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer vision and image understanding : CVIU
دوره 115 6 شماره
صفحات -
تاریخ انتشار 2011